WindSim 12

Т

WindSim 12 changes

- Terrain
 - Geometrical and Arithmetical Grid Expansion
- Wind Fields
 - New "HYPRE" Solver and New PHOENICS Version
 - New Boundary Condition at the Top (Diffusive Link)
 - Simplified Values for Convergency
 - Reduced Wind Database Horizontally
- Objects
 - Power Curve Header Information about IEC Turbine Class
- Wind Resources
 - Export of Wind Resource Maps to Surfer Format ".GRD"
- Energy
 - AEP and IEC Report Exports
 - Matrix Table Export
 - Change in the Time Series AEP Normalization
- Meso Micro Coupling

Terrain | Geometric expansion

- Arithmetical grid expansion:
 - Traditional method of grid expansion.
 - Grid expands at a uniform rate.
 - Number of cells in the grid increases by a constant factor in each expansion step.
- Geometrical grid expansion:
 - Allows faster expansion in the vertical direction compared to the Arithmetical method.
 - Cell height in the grid increases exponentially with each expansion step.
 - Results in a denser resolution in the lower part of the grid.
 - Uses fewer cells overall.

Properties

$\mathbf{\tilde{v}}$	1: Terrain extension	
	Coordinate system	Global
>	X-range	318000; 332975
>	Y-range	7180000; 7194975
>	Projection	_UTM _WGS_84 33
\sim	2: Roughness	
	Roughness height	Read from grid.gws
\sim	3: Numerical model	
	Automatic gridding	False
	Refinement type	Refinement area
>	Refinement area, X-range	322991; 327984
>	Refinement area, Y-range	7184991; 7189984
	Height above terrain	Automatic
	Horizontal gridding	Maximum number of cells
	Maximum number of cells	1000000
	Ratio additive length to resoluti	0.5
	Vertical expansion	Geometrical
	Height distribution factor	0.3
	Number of cells in Z direction	21
	First vertical cell height	2
~	4: Smoothing	
	Smoothing type	No smoothing
~	5: Forest	
	Forest	Disregard forest

Terrain | First vertical cell height

- First vertical cell height in WindSim:
 - Determines the starting point for wind flow simulation.
 - Default value in WindSim is 2m.
 - Balances accuracy and computational efficiency.
- Importance of choosing the appropriate first vertical cell height:
 - Affects resolution of wind flow characteristics at different heights.
 - Higher height leads to coarser resolution, while lower height increases computational time and complexity.
- Adjusting the first vertical cell height:
 - Terrain and weather conditions of the site should be considered.
 - Complex terrain or vegetation may require a lower first vertical cell height for accurate results.
 - Relatively flat and uniform sites may use a higher first vertical cell height.

WindFields | New PHOENICS version which includes "HYPRE"

- New solver setup in WindSim:
 - Enabled by integration of the HYPRE library.
 - Features the BoomerAMG preconditioner and solver.
 - Utilizes algebraic multigrid (AMG) algorithm for linear equation solver in GCV algorithm.
- Benefits of the new solver setup:
 - Improved convergence behavior for large models with parallel option.
 - Enables future development possibilities, such as solving on semi-unstructured grids.
- Availability:
 - New solver setup available with the latest version of Phoenics.
- Integration of HYPRE library:
 - Supports high-performance computations and accurate simulation results.

WindFields | New PHOENICS version which includes "HYPRE"

- Challenge in Computational Fluid Dynamics (CFD):
 - Dealing with a large number of linked equations.
 - Equations describe fluid behavior at each cell in the grid.
 - Millions of cells need simultaneous equation solving.
- Benefits of Multigrid Solver:
 - Efficiently homes in on the right solution.
 - Faster convergence compared to solving only on the fine grid.

- Steps of Multigrid Solver:
 - Start Small:
 - Solve the problem on the fine, detailed grid with a few steps.
 - Initial solution is not perfect but provides a good starting point.
 - Go Big:
 - Create a coarser, simpler grid.
 - Problem appears easier on the coarser grid.
 - Solver refines the solution on this grid.
 - Get Detailed Again:
 - Take the solution from the coarser grid.
 - Use it as a starting point to solve the problem again on the fine grid.

WindFields | New boundary condition at the top (Diffusive link)

- Diffusive link boundary condition:
 - New option in WindSim for controlling flow of air.
 - Sets fixed pressure at the top of the model and imposes a constant speed.
- Benefits of Diffusive link boundary condition:
 - Enables lowering of model height and using fewer cells vertically.
 - Optimizes computational resources and improves efficiency.
- Relevance for offshore applications:
 - Particularly useful for offshore simulations.
 - Helps optimize computational resources in offshore modeling scenarios.

WindFields | Simplified values for convergency

- Options for determining convergence level:
 - Exploratory (0.005):
 - Rapid evaluation of simulation scenarios with lower accuracy.
 - Useful for screening and initial analysis.
 - Recommended for exploratory or preliminary analysis.
 - Accurate (0.0005) default:
 - Designed for high accuracy simulation results.
 - Longer simulation times.
 - Suitable for critical simulation applications where accuracy is paramount.
 - Results are trustworthy and reliable.
 - Recommended as the default for most simulation scenarios, especially when accuracy is critical and time is not a constraint.
- Manual:
 - Users can override the default settings and define their own convergence level.

Convergence settings	Accurate 🗸
Number of iterations	Manual definition
Convergence criteria	Exploratory
4: Convergence monitoring	Accurate
Coordinate system	L100al

WindFields | Reduced wind database horizontally

- XY reduced wind database option:
 - Allows performing modules only on the internal part of the horizontal grid.
 - Applicable when a refinement type (Refinement area, Refinement file, or Actuator Disc) is defined.
 - Enhances simulation speed and efficiency.
 - Maintains a uniform grid inside the refined area.
- Activation and functionality:
 - Option activated in WindFields.
 - Complete wind simulation performed on the entire grid.
 - Subsequent calculations run only on the internal part, where points of interest are typically located.

wi^dsim

Objects | Power curve header information about IEC turbine class

• The power curve header has been enhanced to include IEC turbine class information

WindSim version : 500 turbin manufacturer: Vestas type specification : V90 mode0 hub height 80m IEC class letter : A IEC class number : I max effect . 2000	
turbin manufacturer: Vestas type specification : V90 mode0 hub height 80m IEC class letter : A IEC class number : I max effect . 2000	
type specification : V90 mode0 hub height 80m IEC class letter : A IEC class number : I max effect . 2000	
IEC class letter : A IEC class number : I max effect . 2000	
IEC class number : I max effect . 2000	
max effect . 2000	
air density : 1.225	
Cut-in speed : 4	
Cut-out speed : 25	
Rated wind speed : 13	
Class Cll	
WindSim version : 500	
turbin manufacturer: Vestas	
type specification : V90 mode0 hub height 80m	
IEC class letter : C	
IEC class number : II	
max effect . 2000	
air density : 1.225	
Cut-in speed : 4	
Cut-out speed : 25	
Rated wind speed : 13	

IEC class letter	: S	
IEC Vref	: 32.5	
IEC Iref	: 0.13	
max effect	: 2000	
air density	: 1.225	
Cut-in speed	: 4	
Cut-out speed	: 25	
Rated wind speed	: 13	

Figure 6: Examples of .pws headers with IEC information included.

Wind Resources | Export of wind resource maps to Surfer format ".grd"

- New export feature for wind resource maps:
 - Generates a .grd file containing grid information and variable values at each node.
 - Facilitates data import and visualization.
- Location of exported files:
 - Files located in the "project\layout\energy\grd" and "project\windfield\grd" directories.
 - Link to the exported files provided in the report.
- Benefits of the export feature:
 - Compatibility with various software tools.
 - Users can work with wind resource maps in their preferred software.
 - Enhances convenience and accessibility of data sharing and analysis.

Energy | AEP and IEC report exports

- The AEP and IEC results are tab-separated text files that provide data on Annual energy production and turbine class suitability according to IEC 61400-1 ed. 4 (2019) standards.
- AEP Results file:
 - Provides information on the annual energy production of a wind farm.
 - Includes data such as average wind speed, Weibull parameters, energy and waked energy, extreme wind (50-years), shear exponent, inflow angle, and information about the nearest turbines.

Total wind farm production	on without	wake ef	ffect:		13125	8.0 MWh/year										
Total wind farm production	lating v	wake effects	:		131258.0 MWh/	year										
Mean speed at the referer		8.0	6 m/s													
Wind turbine type I	Label X	(m) Y	(m) Z (m)	H (m)	A Weibull	(m/s) k Weibull	(-) Powe	er density (W/mï;%)	Annual Ener	gy Production	(MWh/vear)	Mean	speed	(m/s)	Mean REW	NS (m/s)
Hundhammer 83m	326703.8	1 7	7185926.00	16	3.84	83.00	8.820	1.680	698.640	_	8.060	-	_	-	-	_ (
V90 mode0 hub height 80m	we	csl	325869.00	718578	2.00	154.01	80.00	8.980	1.730	697.510		7698.00		8.060	-	76
V90 mode0 hub height 80m	we	cs2	326031.00	718592	4.00	163.93	80.00	8.870	1.670	716.500		7816.50		8.150	-	78:
V90 mode0 hub height 80m	we	cs3	326230.00	718612	2.00	128.66	80.00	8.000	1.650	530.220		6823.40		7.370	-	682
V90 mode0 hub height 80m	we	cs4	326564.00	718598	3.00	152.75	80.00	8.600	1.730	614.180		7327.90		7.740	-	732
V90 mode0 hub height 80m	we	cs5	326803.00	718596	5.00	167.85	80.00	8.850	1.710	677.870		7631.00		7.980	-	76:
V90 mode0 hub height 80m	we	cs6	327057.00	718598	3.00	183.19	80.00	8.810	1.620	727.080		7822.40		8.160	-	78:
V90 mode0 hub height 80m	we	cs7	327305.00	718598	2.00	191.85	80.00	9.230	1.710	776.620		7917.30		8.300	-	79
V90 mode0 hub height 80m	we	cs8	327505.00	718615	9.00	218.06	80.00	9.290	1.630	844.310		8259.40		8.570	-	82
V90 mode0 hub height 80m	we	cs9	327705.00	718632	2.00	221.30	80.00	9.440	1.670	856.820		8302.60		8.620	-	83(
V90 mode0 hub height 80m	we	cs10	327932.00	718649	1.00	196.89	80.00	9.220	1.710	768.290		7990.00		8.320	-	799
V90 mode0 hub height 80m	we	csll	328232.00	718658	3.00	175.45	80.00	9.190	1.700	762.550		7955.60		8.280	-	79
V90 mode0 hub height 80m	we	cs12	328387.00	718674	7.00	175.51	80.00	9.210	1.720	775.410		7986.60		8.320	-	798
V90 mode0 hub height 80m	we	cs13	328659.00	718683	4.00	162.49	80.00	8.980	1.680	730.820		7876.00		8.200	-	78'
V90 mode0 hub height 80m	we	csl4	328833.00	718697	7.00	127.28	80.00	8.570	1.680	647.260		7468.60		7.860	-	74
V90 mode0 hub height 80m	we	cs15	327171.00	718624	9.00	195.62	80.00	8.780	1.670	693.810		7577.30		8.000	-	75'
V90 mode0 hub height 80m	we	cs16	327391.00	718644	0.00	206.96	80.00	8.720	1.590	738.400		7692.90		8.130	-	76
V90 mode0 hub height 80m	we	csl7	327336.00	718664	1.00	176.08	80.00	8.400	1.600	644.930		7112.50		7.710	-	71:

Energy | AEP and IEC report exports

• IEC Results file:

- Contains data related to turbine class suitability analysis based on IEC 61400-1 ed. 4 (2019) standards.
- Includes information about the turbine class and related Iref and Vref values.
- Provides data on extreme wind (50-years), Weibull parameters, wind distribution analysis results, mean effective turbulence intensity, turbulence analysis results, IEC inflow angle analysis results, shear exponent minimum and maximum, and extreme turbulence analysis results.

		X (m) Y (m)	Z (m) H (m)	Class IEC Iref	Wohler	Exponent	Referen	ce mast	for the IE	C turbulence	computations	IEC Vref	Ex	xtreme mean win	nd speed (50-year) (m/s)	A Weibull	(m/s) k Weibull (-)	Wind distr
1	wecsl	325869.00	7185782.00	154.01	80.00	NOdef	0.16	10	All 4	2.50 31	7.1	8.980	1.730	True	0.402	FALSE	4.086	6.911	180.000
1	wecs2	326031.00	7185924.00	163.93	80.00	NOdef	0.16	10	All 4	2.50 38	8.5	8.870	1.670	True	0.390	FALSE	2.569	4.333	120.000
1	wecs3	326230.00	7186122.00	128.66	80.00	NOdef	0.16	10	All 4	2.50 30	0.9	8.000	1.650	True	0.414	FALSE	3.521	5.749	0.000
1	wecs4	326564.00	7185983.00	152.75	80.00	NOdef	0.16	10	All 4	2.50 33	3.1	8.600	1.730	True	0.416	FALSE	1.847	3.370	210.000
1	wecs5	326803.00	7185965.00	167.85	80.00	NOdef	0.16	10	All 4	2.50 39	9.6	8.850	1.710	True	0.424	FALSE	2.970	5.822	180.000
1	wecs6	327057.00	7185983.00	183.19	80.00	NOdef	0.16	10	All 4	2.50 39	9.6	8.810	1.620	True	0.422	FALSE	3.892	7.461	180.000
1	wecs7	327305.00	7185982.00	191.85	80.00	NOdef	0.16	10	All 4	2.50 38	8.3	9.230	1.710	FALSE	0.410	FALSE	7.180	11.663	180.000
1	wecs8	327505.00	7186159.00	218.06	80.00	NOdef	0.16	10	All 4	2.50 40	0.3	9.290	1.630	FALSE	0.384	FALSE	4.316	6.753	150.000
1	wecs9	327705.00	7186322.00	221.30	80.00	NOdef	0.16	10	All 4	2.50 40	0.7	9.440	1.670	FALSE	0.367	FALSE	2.216	3.894	120.000
1	wecs10	327932.00	7186491.00	196.89	80.00	NOdef	0.16	10	All 4	2.50 41	1.0	9.220	1.710	FALSE	0.383	FALSE	2.662	5.624	60.000
1	wecsll	328232.00	7186583.00	175.45	80.00	NOdef	0.16	10	A11 4	2.50 41	1.5	9.190	1.700	FALSE	0.401	FALSE	2.367	4.279	150.000
1	wecs12	328387.00	7186747.00	175.51	80.00	NOdef	0.16	10	All 4	2.50 38	8.7	9.210	1.720	FALSE	0.379	FALSE	2.539	3.958	120.000
1	wecs13	328659.00	7186834.00	162.49	80.00	NOdef	0.16	10	All 4	2.50 38	8.3	8.980	1.680	True	0.381	FALSE	2.465	3.653	120.000
1	wecsl4	328833.00	7186977.00	127.28	80.00	NOdef	0.16	10	All 4	2.50 30	6.9	8.570	1.680	True	0.395	FALSE	4.487	9.561	60.000
1	wecs15	327171.00	7186249.00	195.62	80.00	NOdef	0.16	10	All 4	2.50 33	3.5	8.780	1.670	True	0.395	FALSE	5.618	8.614	300.000
1	wecs16	327391.00	7186440.00	206.96	80.00	NOdef	0.16	10	A11 4	2.50 32	2.9	8.720	1.590	True	0.416	FALSE	2.924	4.909	330.000
1	wecs17	327336.00	7186641.00	176.08	80.00	NOdef	0.16	10	All 4	2.50 34	4.2	8.400	1.600	True	0.413	FALSE	3.733	5.707	330.000

Energy | Matrix table export

- The Matrix table export is a tab-separated file that provides a sector-wise breakdown of turbine energy production, energy including wake, turbulence, and speed frequencies.
- The turbulence matrix includes data on Ambient and Effective turbulence and their extrapolation when observed data is missing.
- This allows for the analysis of specific cases such as:
 - directional curtailment
 - sector management systems
 - IEC analysis checks
 - and more.
- The tab-separated format makes it easy to import the data into other software for further processing.

Ambient turbulence information Mean takes into account the directional frequency of the bin speed

Dir	0.0	30.0	60.0	90.0	120.0	150.0	180.0	210.0	240.0	1
1.5	1.474	0.817	0.836	1.001	1.188	1.131	1.260	1.466	1.603	ł
2.5	0.803	0.231	0.377	0.422	0.561	0.509	0.582	0.774	0.920	ł
3.5	0.517	0.105	0.301	0.262	0.378	0.366	0.399	0.508	0.584	(
4.5	0.400	0.088	0.188	0.182	0.255	0.255	0.314	0.354	0.434	(
5.5	0.397	0.070	0.149	0.169	0.189	0.194	0.251	0.281	0.371	(
6.5	0.320	0.062	0.112	0.157	0.161	0.169	0.214	0.239	0.301	(
7.5	0.282	0.052	0.090	0.125	0.141	0.148	0.182	0.206	0.261	(
8.5	0.227	0.055	0.050	0.110	0.118	0.134	0.158	0.193	0.225	(
9.5	0.193	0.033	0.062	0.091	0.105	0.126	0.141	0.155	0.200	(
10.5	0.261	0.014	0.065	0.086	0.099	0.112	0.127	0.145	0.177	(
11.5	0.222	0.183	0.050	0.071	0.090	0.105	0.119	0.136	0.174	(
12.5	0.185	0.023	0.036	0.075	0.088	0.095	0.107	0.122	0.156	(
13.5	0.167	0.032	0.027	0.094	0.084	0.091	0.097	0.120	0.139	(
14.5	0.139	0.019	0.009	0.097	0.081	0.076	0.093	0.119	0.129	(
15.5	0.195	-	0.020	0.122	0.077	0.073	0.079	0.120	0.122	(
16.5	0.239	-	-	0.084	0.066	0.074	0.086	0.108	0.117	(
17.5	0.166	-	-	0.057	0.062	0.067	0.072	0.107	0.106	(
18.5	0.229	-	-	0.038	0.059	0.070	0.064	0.081	0.104	(
19.5	0.088	-	-	0.021	0.058	0.065	0.059	0.088	0.102	(
20.5	0.019	-	-	-	0.062	0.054	0.021	0.079	0.101	(
21.5	0.112	-	-	-	0.053	0.038	0.012	0.070	0.083	(
22.5	0.108	-	-	-	0.051	0.050	-	0.074	0.094	(
23.5	0.195	-	-	-	0.045	0.042	-	0.055	0.084	(
24.5	-	-	-	-	0.037	0.044	-	0.056	0.070	(
25.5	-	-	-	-	0.034	0.031	-	0.046	0.071	(
26.5	-	-	-	-	0.032	0.045	-	0.021	0.060	(
27.5	-	-	-	-	0.011	0.012	-	0.045	0.043	(
28.5	-	-	-	-	-	0.026	-	0.010	0.055	(
29.5	-	-	-	-	0.012	0.013	-	-	0.076	(
30.5	-	-	-	-	-	0.011	-	-	0.066	

Energy | Change in the time series AEP normalization

- Traditional calculation methods in WindSim:
 - Utilize wind rose representation of climatology.
 - Converted and transferred to turbine positions.
 - Inaccuracies due to interpolation of wind speed frequencies, especially with significant directional shifts.
 - Minor impact, but can reach several percent in strongly guided climates.
- WindSim 11 approach:
 - Direct transfer of measurement time series to turbine positions.
 - Avoids conversion to wind rose.
 - Calculates turbine power output based on instantaneous wind speed.
 - Assumed zero power output in the absence of measurements.
- WindSim 12 feature:
 - Retains direct transfer of measurement time series.
 - Changes normalization of Annual Energy Production (AEP).
 - Disregards data gaps and averages power output only over measurement instances.
 - Results in relatively higher AEP values that align more with other methods in the report.

Meso Micro Coupling

- The User Interface of the software has undergone several improvements, including the addition of a postprocessing feature for Self-Organizing Map (SOM) cases.
- The Wind Resource and Energy module now incorporates SOM results by weighting frequencybased sectors, as typically used in WindSim.
- Please note that the postprocessing feature is currently in beta testing, as some energy export and IEC calculation functionality is not yet available. For more information, please refer to the guide "GettingStarted_Meso-microscale_coupling.pdf".
- More on MMC later today by Juho

WindSim Virtual Desktop

- Azure Virtual Machine
 - Windows 11
 - WindSim installed
 - In same datacenter as Accelerator
 - Very high bandwidth network connection
 - No need to have anything installed in your own network

馬 vm-wvd-CompanyName.rdp