WAsP-like statistical downscaling of mesoscale simulations with a CFD model

Juho lipponen, WindSim Meteorologist

WindSim AS Tollbodgaten 22 3111 Tønsberg Norway Tel.: +47 33 38 18 00 WindSim China No. 101 Shaoyang Beili, Chaoyang District 1000029 Beijing China Tel.: +86 186 1029 1570

Mesoscale downscaling

Source: http://www.classzone.com/books/earth_science/terc/content/v isualizations/es1903/es1903page01.cfm

Mountain-valley system

Source: https://kaiserscience.wordpress.com/earthscience/weather/regional-wind-systems/

The benefits of screening with CFD

- Early identification of high-wind spots
- ✓ Better consideration of terrain

WAsP-like downscaling – User meeting 2023

Meso-microscale downscaling approaches

There are two main approaches to conduct downscaling:

We use both in combination!

NEWA

- Coverage for Europe
- Wind data every ~3km
- 14 years timeseries (2005 to 2018)
- Vertical levels from 50 m to 500 m

wi^dsim

Wrong approach: meso data directly in WS as a virtual met mast

Wrong way

Wind Resources

- 1. Use all the meso points inside a WS domain
- 2. Easy to communicate to WAsP users
- 3. Robust: no fitting parameters (e.g., machine learning)

Step 1: Average meso runs by direction

Step 2: boundary conditions to WindSim

Aver. NEWA sector 6/12: U 83m

WS sector 6/12: U 83m

WAsP-like downscaling – User meeting 2023

Step 3: Generalization

Step 3: Generalization

Time series of coefficients for each meso point

Time	L	R	Coeff. L	Coeff. R
0	3	4	1.2	0.2
17520	12	1	0.3	0.9

Step 4: Application

windsim

WAsP-like downscaling – User meeting 2023

WAsP-like

Use as virtual met masts

New downscaling

- Climatology: P All
- ✓ Variable: Mean wind speed 2D (m/s)

- Max power density
 - a. Naïve virtual met mast: 1476 ± 180 W/m²
 - b. WAsP-like downscaling: $1461 \pm 42 \text{ W/m}^2$

New downscaling

- WAsP-like downscaling with WindSim
- Reduce micro downscaling uncertainty in wind atlases
- Validation ongoing
 - More accurate screening in complex terrain?

 $\vec{U}_{MESO} = C_L \vec{L}_{MESO} + C_R \vec{R}_{MESO}$