Inside the activities of the IEA-WIND TASK 31, called Wakebench, the WindSim AS and the University of Perugia are carrying out a series of CFD simulations. Different working groups are set in the task, in particular for the wake modeling of large offshore wind farms the case of Horns Rev is analyzed. Horns Rev is a wind farm counting 80 Vestas V80 deployed on a slightly skewed array of 8 times 10. Large arrays of wind turbines are important test-cases for the wake models and offshore wind farms need accurate wake models. The approaches in estimating the wake losses goes from simple theoretical or empirical laws to full rotor aerodynamic calculations; in between there is a range of possibilities.

In this work it is presented a comparison between power production estimates and real production at Horns Rev. The estimates are carried out with so called analytical models and actuator disc technique. The analytical models used are in particular using the approaches proposed by Katic et al. [1], Larsen [2] and Ishihara et al. [3] while the actuator disc technique is the one described in Crasto & Gravdahl [4].

Two methodologies to post-process the numerical database generated by the actuator disc simulation have been developed, reported in Crasto et al. [5], one is based on the use of the power curve of the machine while a second one is based on an integral over the swept area. Results from both the methodologies are presented and discussed.

References

Cases at 10 m/s at Horns Rev

Turbines Met masts

18 turbines HOLEC three-bladed machines, hub height 35 m, power of 310 kW, for a total power of 5.4 MW.

The wind farm layout is a semi-rectangular grid of 3 × 6 turbines.

Seven fixed met-masts M1-M7 and a mobile met-mast used to measure the wake along the main wind direction T18-T27.

Conclusions

• Two different methods are applied:
 1. Analytical models [1,2,3] AND Actuator discs
 2. Testing on Horns Rev reveals a big sensitivity to sector width;
 3. A relevant difference in power production is observed also at first column of turbines;
 4. Sector width is the one showing a higher mismatch between real production and actuator disc predictions, probably the mismatch is due to a missing modeling for unsteady flows as meandering;
 5. Another probable source of uncertainty in the implemented actuator disc is the missing exchange of torque between rotor and wind.